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Abstract

Measurements are reported of the normalized differential cross sections for top quark
pair production with respect to four kinematic event variables: the missing transverse
energy; the scalar sum of the jet transverse momentum (pT); the scalar sum of the pT
of all objects in the event; and the pT of leptonically decaying W bosons from top
quark decays. The data sample, collected using the CMS detector at the LHC, con-
sists of 5.0 fb−1 of proton-proton collisions at

√
s = 7 TeV and 19.7 fb−1 at

√
s = 8 TeV.

Top quark pair events containing one electron or muon are selected. The results are
presented after correcting for detector effects to allow direct comparison with theo-
retical predictions. No significant deviations from the predictions of several standard
model event simulation generators are observed.
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1 Introduction
The CERN LHC produced millions of top quark pairs (tt) in 2011 and 2012. This allows for a
detailed investigation of the kinematic event properties of tt production such as the missing
transverse energy (Emiss

T ), the scalar sum of the jet transverse momenta (HT), the scalar sum of
the transverse momenta of all objects (ST), and the transverse momentum (pW

T ) of leptonically
decaying W bosons produced in top quark decays. These measurements can be used to verify
current theoretical models, along with their implementation in simulations of tt production,
and also to measure rare standard model (SM) processes such as tt production in association
with a W, Z, or Higgs boson. Since top quark pair production is a major background for many
searches for physics beyond the SM, it is important that the properties of tt events are well
understood.

Here, we report measurements carried out using the CMS detector [1] at the LHC at two dif-
ferent proton–proton center-of-mass energies. The data samples used include integrated lumi-
nosities of 5.0 fb−1 collected in 2011 at

√
s = 7 TeV and 19.7 fb−1 from 2012 at

√
s = 8 TeV. The

tt production cross section is measured as a function of Emiss
T , HT, ST, and pW

T , corrected for de-
tector effects, and compared with the predictions from different event generators. Differential
tt cross sections have previously been measured at the Tevatron [2, 3], and at the LHC [4–9].
These previous measurements study the tt production cross section as a function of the top
quark kinematics and the kinematics of the tt system. The results presented here are comple-
mentary, since the tt production cross section is measured as a function of variables that do not
require the reconstruction of the top quarks from their decay products.

Top quarks decay with close to 100% probability into a W boson and a bottom quark. In this ar-
ticle, we consider the channel in which one of the W bosons decays leptonically into a charged
lepton (electron or muon) along with its associated neutrino, while the other W boson decays
hadronically. This channel has a branching fraction of around 15% for direct decay to each lep-
ton flavor and a relatively clean experimental signature, including an isolated, high-transverse-
momentum lepton, large Emiss

T from the undetected neutrino, and multiple hadronic jets. Two
jets are expected to contain b hadrons from the hadronization of the b quarks produced directly
in the t → bW decay, while other jets (from the hadronic W boson decay or gluon radiation)
will typically contain only light-quark flavors.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter, each composed of a barrel and two endcap sections. Muons are measured in gas-
ionisation detectors embedded in the steel flux-return yoke outside the solenoid. Extensive
forward calorimetry complements the coverage provided by the barrel and endcap detectors.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [1].

3 Simulation
For the Monte Carlo (MC) simulation of the tt signal sample the leading-order MADGRAPH

v5.1.5.11 event generator [10] is used with relevant matrix elements for up to three addi-
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tional partons implemented. Theoretical production cross section values of 177.3 +4.6
−6.0 (scale)±

9.0 (PDF+αS)pb at
√

s = 7 TeV, and 252.9 +6.4
−8.6 (scale) ± 11.7 (PDF+αS)pb at

√
s = 8 TeV,

are used for the normalization of these samples. These cross sections are calculated with the
Top++2.0 program to next-to-next-to-leading order (NNLO) in perturbative QCD, including
soft-gluon resummation to next-to-next-to-leading-logarithm (NNLL) order [11], and assum-
ing a top quark mass mt = 172.5 GeV. The first uncertainty comes from the independent vari-
ation of the renormalization (µR) and factorization (µF) scales, while the second one is associ-
ated with variations in the parton distribution function (PDF) and αS, following the PDF4LHC
prescription with the MSTW2008 68% CL NNLO, CT10 NNLO, and NNPDF2.3 5f FFN PDF
sets [12–16].

The generated events are subsequently processed with PYTHIA v6.426 [17] for parton show-
ering and hadronization. The PYTHIA parton shower is matched to the jets from the hard
quantum chromodynamics (QCD) matrix element via the MLM prescription [18] with a trans-
verse momentum (pT) threshold of 20 GeV. The CMS detector response is simulated using
GEANT4 [19].

Independent tt samples are also generated at both
√

s = 7 TeV and
√

s = 8 TeV with POWHEG

v2 r2819 [20–22]. At 8 TeV, additional samples are generated with both MC@NLO v3.41 [23]
and POWHEG v1.0 r1380 [20–22]. All of the POWHEG samples are interfaced with both PYTHIA

and HERWIG v6.520 [24], whereas the MC@NLO generator is interfaced with HERWIG for parton
showering. These samples, which are all generated to next-to-leading order accuracy, are used
for comparison with the final results.

The most significant backgrounds to tt production are events in which a W boson is produced
in association with additional jets. Other backgrounds include single top quark production, Z
boson production in association with multiple jets, and QCD multijet events where hadronic
activity is misidentified as a lepton. The simulation of background from W and Z boson pro-
duction in association with jets is also performed using the combination of MADGRAPH and
PYTHIA, with a pT matching threshold of 10 GeV in this case. These samples are referred to
as W+jets and Z+jets, respectively. Single top quark production via t- and s-channel W boson
exchange [25] and with an associated on-shell W boson [26] are generated using POWHEG. The
QCD multijet processes are simulated using PYTHIA. The event yields of the background pro-
cesses are normalized according to their predicted production cross section values. These are
from NNLO calculations for W+jets and Z+jets events [27, 28], next-to-leading order calcula-
tions with NNLL corrections for single top quark events [29], and leading-order calculations
for QCD multijet events [17].

Samples are generated using the CTEQ6L PDFs [30] for MADGRAPH samples, the CT10 PDFs [31]
for POWHEG samples, and the CTEQ6M PDFs [30] for MC@NLO. The PYTHIA Z2 tune is used
to describe the underlying event in both the MADGRAPH and POWHEG + PYTHIA samples at√

s = 7 TeV, whereas the Z2* tune is used for the corresponding samples at
√

s = 8 TeV [32].
The underlying event in the POWHEG + HERWIG samples is described by the AUET2 tune [33],
whereas the default tune is used in the MC@NLO + HERWIG sample.

The value of the top quark mass is fixed to mt = 172.5 GeV in all samples. In all cases, PYTHIA

is used for simulating the gluon radiation and fragmentation, following the prescriptions of
Ref. [34]. Additional simulated hadronic pp interactions (“pileup”), in the same or nearby
beam crossings, are overlaid on each simulated event to match the high-luminosity conditions
in actual data taking.

Previous measurements of differential tt production cross sections at the LHC [4, 5, 8] showed
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that several of the tt event generators considered in this analysis predict a harder top quark
pT spectrum than that observed in data. An additional simulated tt sample is considered here,
where the sample produced with the MADGRAPH event generator is reweighted to improve
the agreement of the top quark pT spectrum with data.

4 Event reconstruction and selection
Parallel selection paths for the two lepton types are implemented, resulting in samples clas-
sified as electron+jets and muon+jets. The trigger for the electron+jets channel during the√

s = 7 TeV data taking selects events containing an electron candidate with pT > 25 GeV
and at least three reconstructed hadronic jets with pT > 30 GeV. In the

√
s = 8 TeV data, at least

one electron candidate with pT > 27 GeV is required, with no additional requirement for jets.
In the muon+jets channel, at least one isolated muon candidate with pT > 24 GeV is required
at the trigger level. Each candidate event is required to contain at least one well-measured
vertex [35], located within the pp luminous region in the center of CMS.

Events are reconstructed using a particle-flow (PF) technique [36, 37], which combines infor-
mation from all subdetectors to optimize the reconstruction and identification of individual
long-lived particles.

Electron candidates are selected with a multivariate technique using calorimetry and tracking
information [38]. Inputs to the discriminant include information about the calorimeter shower
shape, track quality, track-shower matching, and a possible photon conversion veto. Electron
candidates are required to have ET > 30 GeV and pseudorapidity in the range |η| < 2.5. The
low-efficiency region 1.44 < |η| < 1.57 between the barrel and endcap sections of the detector
is excluded. Muon candidates are selected with tight requirements on track and vertex quality,
and on hit multiplicity in the tracker and muon detectors [39]. These requirements suppress
cosmic rays, misidentified muons, and nonprompt muons from decay of hadrons in flight.
Muon candidates are required to have pT > 26 GeV and |η| < 2.1.

For the lepton isolation requirement, a cone of size ∆R =
√
(∆η)2 + (∆φ)2 is constructed

around the lepton direction, where ∆η and ∆φ are the differences in pseudorapidity and az-
imuthal angle (in radians), respectively, between the directions of the lepton and another par-
ticle. The pT values of charged and neutral particles found in this cone are summed, excluding
the lepton itself and correcting for the effects of pileup [38]. The relative isolation variable
I(∆R) is defined as the ratio of this sum to the lepton pT. Lepton candidates are selected if they
satisfy I(0.3) < 0.1 for electrons, and I(0.4) < 0.12 for muons.

Reconstructed particles are clustered into jets using the anti-kT algorithm [40] with a distance
parameter of 0.5. The measured pT of each jet is corrected [41] for known variations in the jet
energy response as a function of the measured jet η and pT. The jet energy is also corrected
for the extra energy deposition from pileup interactions [42, 43]. Jets are required to pass loose
identification requirements to remove calorimeter noise [44]. Any such jet whose direction
is less than ∆R = 0.3 from the identified lepton direction is removed. For the identification
of b quark jets (“b tagging”), a “combined secondary vertex” algorithm [45] is used, taking
into account the reconstructed secondary vertices and track-based lifetime information. The b
tagging threshold is chosen to give an acceptance of 1% for light-quark and gluon jets with a
tagging efficiency of 65% for b quark jets.

The final selection requires exactly one high-pT, isolated electron or muon. Events are vetoed
if they contain an additional lepton candidate satisfying either of the following criteria: an
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electron with pT > 20 GeV, |η| < 2.5, and I(0.3) < 0.15; or a muon, with looser requirements
on hit multiplicity, and with pT > 10 GeV, |η| < 2.5, and I(0.4) < 0.2. The event must have at
least four jets with pT > 30 GeV, of which at least two are tagged as containing b hadrons.

After the final selection, 26 290 data events are found at
√

s = 7 TeV, and 153 223 at
√

s = 8 TeV.
The tt contribution to these event samples, as estimated from simulation, is about 92%. The
fraction of true signal events in the samples is 78%. Misidentified all-hadronic or dileptonic tt
events, and events containing tau leptons among the tt decay products, comprise 14% of the
samples. The remaining events are approximately 4% single top quark events, 2% W/Z+jets
events, and 2% QCD multijet events. The efficiency for signal events to satisfy the final selection
criteria is about 8%, as determined from simulation.

5 Cross section measurements
We study the normalized tt differential production cross section as a function of four kinematic
event variables: Emiss

T , HT, ST, and pW
T .

The variable Emiss
T is the magnitude of the missing transverse momentum vector ~pmiss

T , which
is defined as the projection on the plane perpendicular to the beams of the negative vector sum
of the momenta of all PF candidates in the event:

Emiss
T =

(−∑
i

pi
x

)2

+

(
−∑

i
pi

y

)2
 1

2

,

where pi
x and pi

y are the x and y momentum components of the ith candidate, and the sums
extend over all PF candidates. The measured Emiss

T is corrected for pileup and nonuniformities
in response as a function of φ [46].

The variable HT is defined as the scalar sum of the transverse momenta of all jets in the event,

HT = ∑
all jets

pjet
T ,

where the sum extends over all jets having pT > 20 GeV and |η| < 2.5.

The variable ST is the scalar sum of HT, Emiss
T , and the pT of the identified lepton,

ST = HT + Emiss
T + plepton

T .

Finally, pW
T is the magnitude of the transverse momentum of the leptonically decaying W bo-

son, which is derived from the momentum of the isolated lepton and ~pmiss
T

pW
T =

√(
plepton

x + pmiss
x

)2
+
(

plepton
y + pmiss

y

)2
,

where plepton
x and plepton

y are the transverse components of ~plepton, and pmiss
x and pmiss

y are the
transverse components of ~pmiss

T .

Figures 1 and 2 show the observed distributions of Emiss
T , HT, ST, and pW

T , in the
√

s = 8 TeV
data samples, compared to the sum of the corresponding signal and background distributions
from simulation.
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Figure 1: The observed distributions of Emiss
T (top) and HT (bottom) in the

√
s = 8 TeV elec-

tron+jets (left) and muon+jets (right) data samples, compared to predictions from simulation.
The points are the data histograms, with the vertical bars showing the statistical uncertainty,
and the predictions from the simulation are the solid histograms. The shaded region shows
the uncertainty in the values from simulation. These include contributions from the statistical
uncertainty and the uncertainty in the tt cross section. The lower plots show the ratio of the
number of events from data and the prediction from the MC simulation.
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Figure 2: The observed distributions of ST (top) and pW
T (bottom) in the

√
s = 8 TeV elec-

tron+jets (left) and muon+jets (right) data samples, compared to predictions from simulation.
The points are the data histograms, with the vertical bars showing the statistical uncertainty,
and the predictions from the simulation are the solid histograms. The shaded region shows
the uncertainty in the values from simulation. These include contributions from the statistical
uncertainty and the uncertainty in the tt cross section. The lower plots show the ratio of the
number of events from data and the prediction from the MC simulation.
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For simulated tt signal events, these four kinematic variables are also calculated using the
momenta of particles in the event, before the simulation of the detector response. We refer
to the quantities calculated in this way as the generated variables. The generated value of
Emiss

T is the magnitude of the vector sum of the pT of all neutrinos in the event. The long-lived
particles in the event are clustered into jets in the same way as the reconstructed particles. The
generated value of HT is the sum of the magnitudes of the pT of these jets with pT > 20 GeV
and |η| < 2.5. The generated values of ST and pW

T are calculated in the same way as the
corresponding reconstructed variables, using the ~pT of the charged lepton from the leptonic
decay of a W boson coming from t→ bW decay.

The choice of bin widths for this measurement is optimized separately for each kinematic event
variable to minimize the migration between bins. This optimization is based on three criteria:
(i) of the simulated signal events for which the value of the generated variable falls in the bin,
at least 50% are required to have the reconstructed variable in the same bin (this is sensitive
to migration of events out of the bin); (ii) of the simulated signal events for which the value
of the reconstructed variable falls in the bin, at least 50% are required to have the generated
variable in the same bin (this is sensitive to migration of events into the bin); (iii) the number
of reconstructed simulation events in a bin is required to be more than 100. These criteria
ensure that bin-to-bin migrations are kept small, while allowing a differential cross section
measurement with reasonable granularity.

The number of tt events in each bin of each kinematic event variable, and in each channel, is
obtained by subtracting the expected contributions of background processes from data. The
contributions of single top quark, and W or Z boson plus jet events are estimated from simula-
tion.

In the case of the QCD multijet background, the contribution is estimated from data using
a control region where the selection criteria are modified to enrich the contribution of QCD
multijet events. In the electron+jets channel, the control region is obtained by inverting the
photon conversion veto on the electron. In addition to this, the number of b-tagged jets is
required to be exactly zero. The small contamination of tt, single top, W+jets, and Z+jets events
in this control region, as estimated from simulation, is subtracted from the data. Then, the ratio
of simulated QCD multijet events in the control region and the signal region is used to scale the
normalization of the data-driven QCD multijet estimate from the control region to the signal
region in the data. The control region in the muon+jets channel is obtained by inverting the
isolation criterion on the muon in the selected events, and by requiring exactly zero b-tagged
jets. The jet selection criterion is also modified, requiring at least three jets. The same procedure
is then followed to estimate the contribution of QCD mulitjet events in the muon+jets signal
region.

The number of tt events from data in each bin is then corrected for the small fractions of dilep-
tonic, all-hadronic, and tau tt events in the final sample, as determined from simulation, and
for experimental effects, such as detector resolution, acceptance, and efficiency. This correction
is performed by constructing a response matrix that maps the generated values to the recon-
structed values for the four kinematic variables in the simulated tt signal events. The response
matrix is constructed using the MADGRAPH tt sample. This matrix is then inverted, using
regularized singular-value decomposition [47] in the ROOUNFOLD [48] software framework.
Since we impose no requirements on the generated events, the procedure corrects to the full
signal phase space.

The fully-corrected numbers of tt events in the electron+jets and muon+jets channels yield
consistent results. These are then added and used to calculate the normalized tt differential
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production cross section with respect to each kinematic event variable, X, using:

1
σ

dσj

dX
=

1
N

xj

∆X
j

, (1)

where xj represents the number of unfolded signal events in bin j, ∆X
j is the width of bin j; σ

is the total tt production cross section, and N = ∑i xi is the total number of unfolded signal
events.

6 Systematic uncertainties
The systematic uncertainties in the experimental and theoretical input quantities are evaluated
and propagated to the final results, taking correlations into account. Since the final result is
normalized to the total number of events, the effect of uncertainties that are correlated across all
bins is negligible. As such, only uncertainties that affect the shape of the measured distributions
are significant.

The uncertainty coming from the choice of renormalization and factorization scales in the
physics modeling of tt events is determined by producing two additional simulated event
samples. These samples are generated with both scales simultaneously varied by a factor of
two up or down from their default values equal to the Q of the hard process in the event;
Q is defined via Q2 = m2

t + ∑ p2
T, where the sum is over all additional final-state partons in

the matrix element. The effect of varying the renormalization and factorization scales in the
W+jets and Z+jets samples is also considered to determine the uncertainty in the shape of this
background. The uncertainty arising from the choice of parton shower matching threshold in
the event generation is determined in a similar fashion, using additional samples in which the
threshold is varied up or down. Uncertainties from the modeling of the hadronization are eval-
uated by comparing POWHEG v1 simulated samples with two different hadron shower gener-
ators (PYTHIA and HERWIG). The uncertainty owing to the choice of the PDF is determined by
reweighting the simulated events and repeating the analysis using the 44 CTEQ6L PDF error
sets [30]. The maximum variation is taken as the uncertainty. Simulated samples with the top
quark mass varied by ±1 GeV, which corresponds to the precision of the measured top quark
mass [49], are generated to evaluate the effect of the uncertainty in this parameter. The effect
of reweighting the top quark pT spectrum in simulation, as described in Section 3, is found to
have a negligible effect for low values of the kinematic event variables, and increases to 3–7%
for the highest values.

Other uncertainties are associated with imperfect understanding of efficiencies, resolutions,
and scales describing the detector response. The uncertainty arising from each source is esti-
mated, and the analysis repeated with each corresponding parameter varied within its uncer-
tainty.

The efficiencies and associated uncertainties for triggering and lepton identification are de-
termined from data by a tag-and-probe method [50]. The probabilities for identifying and
misidentifying b jets in the simulation are compared to those measured in data, and the re-
sulting correction factors and their uncertainties are determined as a function of jet energy and
quark flavor. The uncertainties in the correction factors are typically 2%.

The uncertainty in the jet energy scale (JES) is determined as a function of the jet pT and η [41],
and an uncertainty of 10% is included in the jet energy resolution (JER) [41]. The effect of
this limited knowledge of the JES and JER is determined by varying the JES and JER in the
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simulated samples within their uncertainties. The uncertainty in the JES and JER, as well as
uncertainties in the electron, photon, tau, and muon energy scale, are propagated into the cal-
culation of Emiss

T . The uncertainty in the electron and photon energy scale is 0.6% in the barrel,
and 1.5% in the endcap [38]. The uncertainty in the tau lepton energy scale is estimated to be
±3% [51], while the effect of the uncertainty in the muon momentum measurement is found to
be negligible. A 10% uncertainty is assigned to the estimate of the nonclustered energy used in
the calculation of Emiss

T [46].

The effect of the uncertainty in the level of pileup is estimated by varying the inelastic pp cross
section used in the simulation by ±5% [52].

The uncertainty in the normalization of the background is determined by varying the normal-
ization of the single top, W+jets, and Z+jets processes by±30%, and the QCD multijet processes
by ±100%. The uncertainty in the shape of the QCD multijet distribution in the electron chan-
nel is estimated by using an alternative control region in data to determine the contribution of
QCD multijet events. This uncertainty is found to have a negligible effect.

The dominant systematic effects are caused by the uncertainties in the modeling of the had-
ronization and the tt signal. For illustrative purposes, typical systematic uncertainties in the√

s = 8 TeV results coming from each of the sources described above are presented in Table 1.
The values shown for each kinematic event variable are the median uncertainties over all of the
bins for that variable.

Table 1: Typical relative systematic uncertainties in percent (median values) in the normalized
tt differential cross section measurement as a function of the four kinematic event variables at
a center-of-mass energy of 8 TeV (combination of electron and muon channels). Typical values
of the total systematic uncertainty are also shown.

Uncertainty source
Relative (%)

Emiss
T HT ST pW

T
Fact./Renorm. scales

and matching threshold
7.6 4.0 2.6 3.3

Hadronization 4.3 5.0 8.5 3.0
PDF 0.5 0.6 0.6 0.4

Top quark mass 0.4 0.7 0.8 0.3
Top quark pT reweighting 1.4 0.9 0.6 0.6
Lepton trigger efficiency

& selection
<0.1 <0.1 <0.1 <0.1

b tagging 0.3 0.1 0.3 <0.1
Jet energy scale 0.3 0.2 0.3 <0.1

Jet energy resolution <0.1 <0.1 <0.1 <0.1
Emiss

T 0.2 — <0.1 0.1
Pileup 0.4 <0.1 0.1 0.2

Background Normalization 2.6 1.0 2.1 1.4
QCD shape 0.4 0.2 0.5 0.4

Total 9.9 8.6 9.5 4.4
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7 Results
The normalized differential tt cross sections as a function of each of the kinematic event vari-
ables are shown in Figs. 3 and 4 for the

√
s = 7 TeV data, and in Figs. 5 and 6 for the

√
s = 8 TeV

data. The results are also presented in Tables A.1–A.8 of Appendix A.

The data distributions in the figures are compared with the predictions from the event gener-
ators in the left-hand plots: MADGRAPH and POWHEG V2 with two different hadron shower
generators, PYTHIA and HERWIG. For the

√
s = 8 TeV results, the predictions from the MC@NLO

and POWHEG V1 generators are also shown. The effect on the predicted distributions from
varying the modeling parameters (the matching threshold and renormalization scale Q2) up
and down by a factor of two for the MADGRAPH event generator is shown in the right-hand
plots for the two MADGRAPH simulations. The uncertainties shown by the vertical bars on the
points in the figures and given in the tables include both the statistical uncertainties and those
resulting from the unfolding procedure.

The measurements at
√

s = 7 TeV are well described by all the event generators in the distri-
bution of Emiss

T . For ST, pW
T , and HT, the event generators predict a somewhat harder spectrum

than seen in data. However, the POWHEG V2 + PYTHIA event generator provides a reasonable
description of the HT and ST differential cross sections.

The results at
√

s = 8 TeV are generally well described by the MC@NLO and the POWHEG V2 +
PYTHIA event generators. The POWHEG V2 + HERWIG event generator describes the Emiss

T and
pW

T distributions well. However, for HT and ST this event generator predicts a harder spectrum
than seen in data, at both center-of-mass energies.

The MADGRAPH event generator generally predicts a harder spectrum than seen in data for
all variables. The variations in matching threshold and Q2 in the MADGRAPH event generator
are not sufficient to explain this difference between the prediction and data. However, the
MADGRAPH event generator provides a good description of the data after reweighting the top
quark pT spectrum, as described in Section 3. The prediction obtained from the MADGRAPH

event generator after the reweighting is shown on all the plots.

8 Summary
A measurement of the normalized differential cross section of top quark pair production with
respect to the four kinematic event variables Emiss

T , HT, ST, and pW
T has been performed in pp

collisions at a center-of-mass energy of 7 TeV using 5.0 fb−1 and at 8 TeV using 19.7 fb−1 of data
collected by the CMS experiment.

This study confirms previous CMS findings that the observed top quark pT spectrum is softer
than predicted by the MADGRAPH, POWHEG, and MC@NLO event generators, but otherwise
there is broad consistency between the MC event generators and observation. This result pro-
vides confidence in the description of tt production in the SM and its implementation in the
most frequently used simulation packages.
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Figure 3: Normalized Emiss
T (top) and HT (bottom) differential tt cross sections from the com-

bined electron and muon data at
√

s = 7 TeV. The vertical bars on the data points represent the
statistical and systematic uncertainties added in quadrature. The inner section of the vertical
bars, denoted by the tick marks, show the statistical uncertainty. Left: comparison with differ-
ent simulation event generators: MADGRAPH + PYTHIA (both the default and after reweighting
the top quark pT spectrum), POWHEG V2 + HERWIG, and POWHEG V2 + PYTHIA. Right: com-
parison with predictions from the MADGRAPH + PYTHIA event generator found by varying the
matching threshold and renormalization scales (µR, µF) up and down by a factor of two. The
lower plots show the ratio of the predictions to the data, with the statistical and total uncertain-
ties in the ratios indicated by the two shaded bands.
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Figure 4: Normalized ST (top) and pW
T (bottom) differential tt cross sections from combined

electron and muon data at
√

s = 7 TeV. The vertical bars on the data points represent the statis-
tical and systematic uncertainties added in quadrature. The inner section of the vertical bars,
denoted by the tick marks, show the statistical uncertainty. Left: comparison with different
simulation event generators: MADGRAPH + PYTHIA (both the default and after reweighting
the top quark pT spectrum), POWHEG V2 + HERWIG, and POWHEG V2 + PYTHIA. Right: com-
parison with predictions from the MADGRAPH + PYTHIA event generator found by varying the
matching threshold and renormalization scales (µR, µF) up and down by a factor of two. The
lower plots show the ratio of the predictions to the data, with the statistical and total uncertain-
ties in the ratios indicated by the two shaded bands.
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Figure 5: Normalized Emiss
T (top) and HT (bottom) differential tt cross sections from combined

electron and muon data at
√

s = 8 TeV. The vertical bars on the data points represent the statis-
tical and systematic uncertainties added in quadrature. The inner section of the vertical bars,
denoted by the tick marks, show the statistical uncertainty. Left: comparison with different
simulation event generators: MADGRAPH + PYTHIA (both the default and after reweighting the
top quark pT spectrum), MC@NLO + HERWIG, POWHEG V1 + HERWIG, POWHEG V1 + PYTHIA,
POWHEG V2 + HERWIG, and POWHEG V2 + PYTHIA. Right: comparison with predictions from
the PYTHIA event generator found by varying the matching threshold and renormalization
scales (µR, µF) up and down by a factor of two. The lower plots show the ratio of the predic-
tions to the data, with the statistical and total uncertainties in the ratios indicated by the two
shaded bands.
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Figure 6: Normalized ST (top) and pW
T (bottom) differential tt cross sections from combined

electron and muon data at
√

s = 8 TeV. The vertical bars on the data points represent the statis-
tical and systematic uncertainties added in quadrature. The inner section of the vertical bars,
denoted by the tick marks, show the statistical uncertainty. Left: comparison with different
simulation event generators: MADGRAPH + PYTHIA (both the default and after reweighting the
top quark pT spectrum), MC@NLO + HERWIG, POWHEG V1 + HERWIG, POWHEG V1 + PYTHIA,
POWHEG V2 + HERWIG, and POWHEG V2 + PYTHIA. Right: comparison with predictions from
the MADGRAPH + PYTHIA event generator found by varying the matching threshold and renor-
malization scales (µR, µF) up and down by a factor of two. The lower plots show the ratio of
the predictions to the data, with the statistical and total uncertainties in the ratios indicated by
the two shaded bands.
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A Additional tables
The measured values of the tt differential cross sections as a function of Emiss

T , HT, ST, and
pW

T for
√

s = 7 TeV and
√

s = 8 TeV are given in the tables below, along with their statistical,
systematic, and total uncertainties.

Table A.1: Normalized tt differential cross section measurements with respect to the Emiss
T vari-

able at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The
rightmost three columns show the relative uncertainties on the measured values, in percent.
The statistical and systematic uncertainties are listed separately, and are combined in quadra-
ture to give the overall relative uncertainty.

Emiss
T 1/σ dσ/dEmiss

T ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

0–27 6.44× 10−3 0.83 4.5 4.6
27–52 1.32× 10−2 0.60 2.8 2.9
52–87 8.75× 10−3 0.58 1.9 2.0
87–130 3.14× 10−3 0.80 6.0 6.0

130–172 8.93× 10−4 1.1 12 12
172–300 1.32× 10−4 1.4 19 19

Table A.2: Normalized tt differential cross section measurements with respect to the HT vari-
able at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The
rightmost three columns show the relative uncertainties on the measured values, in percent.
The statistical and systematic uncertainties are listed separately, and are combined in quadra-
ture to give the overall relative uncertainty.

HT 1/σ dσ/dHT ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

120–185 2.48× 10−3 1.5 6.8 6.9
185–215 4.86× 10−3 1.4 5.5 5.7
215–247 4.89× 10−3 1.3 4.4 4.6
247–283 4.05× 10−3 1.2 2.8 3.1
283–323 2.99× 10−3 1.1 2.9 3.1
323–365 2.06× 10−3 1.1 5.4 5.6
365–409 1.37× 10−3 1.1 7.0 7.1
409–458 8.93× 10−4 1.1 9.3 9.4
458–512 5.49× 10−4 1.2 9.9 10
512–570 3.38× 10−4 1.4 13 13
570–629 2.04× 10−4 1.8 10 11
629–691 1.25× 10−4 2.2 14 14
691–769 7.20× 10−5 2.7 12 13
769–1000 2.51× 10−5 3.0 17 17
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Table A.3: Normalized tt differential cross section measurements with respect to the ST variable
at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The right-
most three columns show the relative uncertainties on the measured values, in percent. The
statistical and systematic uncertainties are listed separately, and are combined in quadrature to
give the overall relative uncertainty.

ST 1/σ dσ/dST ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

146–277 1.31× 10−3 1.2 8.4 8.5
277–319 4.12× 10−3 1.1 6.7 6.8
319–361 4.05× 10−3 1.0 4.2 4.3
361–408 3.18× 10−3 0.91 1.8 2.0
408–459 2.21× 10−3 0.93 4.5 4.6
459–514 1.44× 10−3 1.0 8.1 8.2
514–573 8.96× 10−4 1.1 10 11
573–637 5.42× 10−4 1.2 11 11
637–705 3.25× 10−4 1.3 11 11
705–774 1.95× 10−4 1.6 12 13
774–854 1.13× 10−4 1.9 12 12
854–940 6.32× 10−5 2.3 10 10
940–1200 2.26× 10−5 2.7 14 14

Table A.4: Normalized tt differential cross section measurements with respect to the pW
T vari-

able at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The
rightmost three columns show the relative uncertainties on the measured values, in percent.
The statistical and systematic uncertainties are listed separately, and are combined in quadra-
ture to give the overall relative uncertainty.

pW
T 1/σ dσ/dpW

T ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

0–27 3.58× 10−3 1.3 3.8 4.1
27–52 8.56× 10−3 0.96 3.4 3.6
52–78 9.33× 10−3 0.81 2.5 2.6
78–105 7.06× 10−3 0.96 1.9 2.1
105–134 4.28× 10−3 1.2 4.1 4.2
134–166 2.20× 10−3 1.3 6.1 6.2
166–200 1.02× 10−3 1.6 8.0 8.1
200–237 4.56× 10−4 2.2 9.9 10
237–300 1.63× 10−4 2.9 13 13
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Table A.5: Normalized tt differential cross section measurements with respect to the Emiss
T vari-

able at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The
rightmost three columns show the relative uncertainties on the measured values, in percent.
The statistical and systematic uncertainties are listed separately, and are combined in quadra-
ture to give the overall relative uncertainty.

Emiss
T 1/σ dσ/dEmiss

T ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

0–27 5.90× 10−3 0.59 11 11
27–52 1.32× 10−2 0.36 3.9 3.9
52–87 9.22× 10−3 0.40 3.9 3.9
87–130 3.20× 10−3 0.55 8.6 8.7

130–172 8.46× 10−4 0.81 13 13
172–300 1.18× 10−4 1.3 19 19

Table A.6: Normalized tt differential cross section measurements with respect to the HT vari-
able at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The
rightmost three columns show the relative uncertainties on the measured values, in percent.
The statistical and systematic uncertainties are listed separately, and are combined in quadra-
ture to give the overall relative uncertainty.

HT 1/σ dσ/dHT ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

120–185 2.10× 10−3 0.68 9.1 9.1
185–215 4.26× 10−3 0.65 6.1 6.2
215–247 4.52× 10−3 0.57 4.1 4.1
247–283 3.99× 10−3 0.50 2.9 3.0
283–323 3.12× 10−3 0.46 4.0 4.0
323–365 2.28× 10−3 0.44 4.5 4.6
365–409 1.60× 10−3 0.44 5.8 5.8
409–458 1.07× 10−3 0.43 7.9 7.9
458–512 6.83× 10−4 0.45 8.6 8.6
512–570 4.26× 10−4 0.51 9.0 9.0
570–629 2.66× 10−4 0.65 9.9 9.9
629–691 1.64× 10−4 0.82 9.7 9.7
691–769 9.93× 10−5 0.99 11 11
769–1000 3.78× 10−5 1.1 11 11
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Table A.7: Normalized tt differential cross section measurements with respect to the ST variable
at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The right-
most three columns show the relative uncertainties on the measured values, in percent. The
statistical and systematic uncertainties are listed separately, and are combined in quadrature to
give the overall relative uncertainty.

ST 1/σ dσ/dST ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

146–277 1.10× 10−3 0.84 6.3 6.3
277–319 3.61× 10−3 0.71 5.8 5.9
319–361 3.82× 10−3 0.54 4.1 4.1
361–408 3.24× 10−3 0.46 0.80 0.92
408–459 2.41× 10−3 0.48 2.8 2.9
459–514 1.66× 10−3 0.57 6.1 6.1
514–573 1.07× 10−3 0.69 9.0 9.1
573–637 6.65× 10−4 0.74 9.6 9.6
637–705 4.03× 10−4 0.71 10 10
705–774 2.43× 10−4 0.73 11 11
774–854 1.44× 10−4 0.88 9.3 9.4
854–940 8.21× 10−5 1.2 8.9 9.0
940–1200 3.15× 10−5 1.5 9.2 9.4

Table A.8: Normalized tt differential cross section measurements with respect to the pW
T vari-

able at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The
rightmost three columns show the relative uncertainties on the measured values, in percent.
The statistical and systematic uncertainties are listed separately, and are combined in quadra-
ture to give the overall relative uncertainty.

pW
T 1/σ dσ/dpW

T ± stat. ± syst. Rel. uncert.
( GeV) (GeV−1) (%) (%) (%)

0–27 3.61× 10−3 0.54 4.4 4.4
27–52 8.56× 10−3 0.40 4.3 4.3
52–78 9.23× 10−3 0.34 2.5 2.5
78–105 7.02× 10−3 0.40 1.6 1.6

105–134 4.29× 10−3 0.50 4.3 4.3
134–166 2.22× 10−3 0.55 7.1 7.1
166–200 1.04× 10−3 0.67 9.6 9.6
200–237 4.66× 10−4 0.94 13 13
237–300 1.69× 10−4 1.2 16 16
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A. König, M. Krammer1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady2,
B. Rahbaran, H. Rohringer, J. Schieck1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg,
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V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress,
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L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, D. Ciangottinia ,b ,2, L. Fanòa ,b, P. Laricciaa ,b,
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,30, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia,
M.A. Cioccia ,30, R. Dell’Orsoa, S. Donatoa,c ,2, G. Fedi, L. Foàa,c†, A. Giassia, M.T. Grippoa,30,
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K. Romanowska-Rybinska, M. Szleper, P. Zalewski



30 B The CMS Collaboration

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura,
M. Olszewski, M. Walczak
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T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn,
S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-
Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, E. Sexton-Kennedy, A. Soha,
W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering,
C. Vernieri, M. Verzocchi, R. Vidal, H.A. Weber, A. Whitbeck, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, G.P. Di
Giovanni, R.D. Field, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev,
H. Mei, P. Milenovic64, G. Mitselmakher, D. Rank, R. Rossin, L. Shchutska, M. Snowball,
D. Sperka, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian,
V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, M. Hohlmann, H. Kalakhety, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov,
L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez,
C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria

The University of Iowa, Iowa City, USA
B. Bilki65, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko,
J.-P. Merlo, H. Mermerkaya66, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel,
F. Ozok55, A. Penzo, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic,
C. Martin, M. Osherson, M. Swartz, M. Xiao, Y. Xin, C. You

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, D. Majumder, M. Malek, M. Murray,
S. Sanders, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini,
N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez,
N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin,
A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli,



35

L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, Y. Iiyama, G.M. Innocenti,
M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, A.C. Marini, C. Mcginn,
C. Mironov, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans,
K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang,
V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota,
Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez,
R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy,
F. Ratnikov, J.E. Siado, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava,
A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi,
D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood,
J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev,
K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch,
N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, T. Pearson, M. Planer, A. Reinsvold, R. Ruchti,
G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, W. Ji,
K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva,
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